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3.1 Archimedes Principle Revisited and Static Equilibrium

Most people find it truly amazing that steel ships weighing hundreds of thousands of tons can float
in water. We know they float because we have seen it with our own eyes, but what we have seen
somehow seems contrary to other everyday experiences. Take a steel bar, throw it into the water,
and it will sink immediately. Why will a pound or so of metal sink, whereas several tons of the
same metal will float?  

From your study of Chapter 2 you realize that each object in the water is buoyed up with a force
equal to the weight of the water displaced by the object. To get an object to float, the object must
be able to displace a volume of water equal in weight to the weight of the object itself. With this
knowledge you can build a concrete canoe!

At this point you know the name of the Greek mathematician who discovered this principle of
flotation  -  Archimedes.

NB: Be sure that you can verbally and mathematically define Archimedes Principle.

Let us combine the concepts of Archimedes Principle with static equilibrium as applied to a free
floating ship in calm water.  

3.1.1 Forces Acting on a Floating Body

The forces of concern on a freely floating ship are the distributed gravitational forces and the
distributed buoyant forces. The forces are said to be distributed because they act over the entire
ship. Some engineering analysis require the use of the distributed force system to do the modeling
(this will be used  in Chapter 6).   Other analysis allow the engineer to replace the distributed
force system with an equivalent single resultant vector. The resultant vector is the sum of the
distributed force system and is considered to act at such a location as to create the same effect on
the body as the distributed system.

NB: In this chapter all distributed forces are replaced with resultant vectors to do the
hydrostatic analysis.

3.1.1.1 Force due to Gravity

The force of gravity acts on each little part of the ship. Instead of dealing with millions of weights
acting at millions of places throughout a ship, we resolve all of these weights into one resultant
force, called the resultant weight or displacement (ÄS ) of the ship. This gravitational force or
resultant weight, is resolved to act at the center of gravity (G), which is simply the weighted
average location of all of the weights which make up a ship.  See Figure 3.1.
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Figure 3.1 - Ship at Static Equilibrium Showing Resultant Weight and Distributed & 
  Resultant Buoyant Forces.

3.1.1.2 Force due to Buoyancy

The second system of distributed forces on a freely floating ship comes from the pressure exerted
on the submerged part of the hull by the water. These hydrostatic forces act perpendicular to the
surface of the hull and can be resolved into horizontal and vertical components with respect to the
surface of the water.  

The sum of the horizontal hydrostatic forces will be zero. This should make sense to you.  If the
horizontal forces didn’t balance it would imply that a ship would move through the water all by
itself without power or external forces. This kind of spontaneous movement does not occur.

The sum of the vertical hydrostatic forces is not zero. The net vertical force is called the resultant
buoyant force (FB ). This force, like weight, is resolved to act at a unique point. The buoyant force
acts at the center of buoyancy (B), which is the geometric centroid of the underwater volume. See
Figure 3.1.
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Pabsolute ' Patm % ñ g z
1 ft 2

144 in 2
Equation 3-3

Notes on Figure 3-1:

! The distributed forces shown on the outside of the hull are being replaced by the resultant
buoyant force. Normally you would not show both because it is redundant.

! The absolute pressure at depth “z” below the water surface is due to the atmospheric
pressure plus the pressure from the column of water above the point of interest. This is
shown in Equation 3-3 .  

where: Pabsolute  is the absolute pressure at depth “z” (psi).
Patm is the atmospheric pressure at the surface of the water (psi).
ñ is the density of the water (lb- s2/ft4).
g is the magnitude of the acceleration of gravity. (32.17 ft/s2).

! The resultant weight and the resultant buoyant force always act perpendicular to the surface
of the water. Resultant buoyant force acts upward while the resultant weight force acts
downward.

! The vector arrows representing the resultant weight and resultant buoyant force must have
their heads (or tails) attached to the center of gravity and center of buoyancy, be equal in
length, and be labeled with symbols.

! We always use a Capital “G” for the ship’s center of gravity and a lower case “g” for the
center of gravity of some object on the ship. You must use this convention in your
diagrams.

! The magnitude of the resultant weight (ÄS ) is the displacement (ÄS ). The resultant weight
is a vector and the displacement is a scalar. Both have units of LT.

! The center of buoyancy is at the centroid of the submerged volume of the hull.
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j PF ' 0 Equation 3-1

j Fx ' 0 j Fy ' 0 j Fz ' 0 Equation 3-2

j Fx ' 0 j Fy ' 0 j Fz ' 0 ' FB & Äs

FB ' Äs

Equation 3-4

3.1.2 Static Equilibrium

Static Equilibrium is defined as a condition where:

 “........the sum of the forces and the sum of the moments on a body
are zero so that the body has no tendency to translate or rotate.”

Each of the conditions is met in Figure 3.1. Let us explore each of them in the following
paragraphs.

3.1.2.1 Forces

In general, there are two ways to mathematically state that the sum of the forces are zero.  Equation
3-1 shows the vector equation stating this.

Equation 3-2 shows the equivalent set of scalar equations stating this.

In Figure 3.1 there are only two vertical forces shown. Immediately we can see that these forces
must be equal and opposite or else the ship would sink or fly! We can prove this formally by
applying Equation 3-2 to the vector diagram shown in Figure 3.1.

where: Ó F z is the sum of the forces in the vertical direction with positive “z” as the up
direction.

FB is the magnitude of the resultant buoyant force (lb).
ÄS  is the magnitude of the resultant  weight of the ship, called the displacement

(lb).



3-5

FB ( lb ) ' ñ ( lb&s 2/ft 4 ) g ( ft/s 2) L ( ft 3)

L ( ft 3) '
FB ( lb )

ñ ( lb&s 2/ft 4) g ( ft/s 2)

L ( ft 3) '
8640 LT 2240 lb/LT

1.99 lb&s 2/ft 4 32.17 ft/s 2

L ( ft 3) ' 302,300 ft 3

j PMp ' 0 Equation 3-5

Example 3.1 Calculate the submerged volume of a DDG51 floating at a draft of 21.0 ft and level
trim in sea water. (ñ = 1.99 lb-s2/ft4) (g = 32.17 ft/s2) (1LT = 2240 lb).

From DDG51 curves of form.
@ 21 ft draft -   curve 1 = 144
Y ÄS = 144 x 60 LT

ÄS = 8640 LT

From Principle of Static Equilibrium
FB = ÄS

Y FB = 8640 LT

From Archimedes Principle

3.1.2.2 Moments

Equation 3-4 alone would not guarantee static equilibrium. The sum of the moments must also be
zero!  For the forces shown in Figure 3-1, the sum of moments about any arbitrary reference point
would be zero. This is because the two resultant vertical forces shown have equal magnitudes,
opposite direction, and lines of action that are coincident.  

Equation 3-5 shows how to mathematically state the sum of the moments are zero about any
reference point “p”.  Notice it is a vector equation. The direction of the vector is normal to the
plane containing the lever arm and the force.

NB: The concept of a moment was discussed in Chapter 1 Section 1.9.4.  Please go back and
re-read that section if you are not comfortable with the concept of a moment.
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3.1.3 Summary

In summary, Figure 3.1 shows a ship in static equilibrium because the two necessary and sufficient
conditions for static equilibrium have been met; the vector sum of the forces are zero and the
vector sum of the moments are zero. This means that the ship will have no tendency to move either
in translation or  rotation. It will just sit in the same position until something changes with the ship
or an outside force acts on it. Further, it means that Archimedes Principle can be used to find the
displacement of a freely floating ship since it is equal to the magnitude of the buoyant force.

Student Exercise: To see if you understood the concepts of this section draw the same ship in
static equilibrium assuming that a large weight has been shifted from port to
starboard so that the center of gravity of the ship  has moved off the
centerline.  Label this figure “Figure 3.2" and add a caption to describe
what you are trying to show.
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3.2 New States of Static Equilibrium Due to Weight Additions, Weight
Removals and Weight Shifts on a Floating Ship. 

In Section 3.1 we were able to get a solid foundation in what static equilibrium meant for a freely
floating ship. Now we want to be able to determine the new static equilibrium condition after
changing the weight distribution on a ship.

An altered weight distribution will cause the Center of Gravity (G) to move. To fully identify the
location of G before and after its movement, we must be able to reference it in space in the 3
Cartesian directions. As with the other centroids, the location of G is referenced vertically to the
keel (KG) or the Vertical Center of Gravity (VCG), transversely to the centerline with the
Transverse Center of Gravity (TCG) and longitudinally to either of the perpendiculars or midships
with the Longitudinal Center of Gravity (LCG). Recall that the correct sign convention is negative
to port of the centerline and aft of midships.

The weight distribution on a ship can change whenever...

! A weight is shifted in any one of three separate directions

! A weight is added or removed from anywhere on a ship

! By some combination of the above.

At first, determining the effect of any of these changes upon the location of G may seem
overwhelming. However, it is manageable if we break it down into a study of three separate
directions and then further break it down into shifts, additions, and removals in each of these
directions. This process will be stepped through over the following pages.

Think of how practical this study of hydrostatics could be. On a ship the distribution of weight is
constantly changing and it would be desirable to know the final static equilibrium position of your
ship after these changes. If these final conditions are undesirable the captain can take actions to
avoid or minimize the effects.

Student Exercise: With the help of your instructor make a list of ways weight is distributed
differently over time from planned and unplanned evolutions:
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Figure 3.3 - The Effect of a Weight Addition Upon the
Center of Gravity of a Ship
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Figure 3.4 - The Effect of a Weight Removal Upon the
Center of Gravity of a Ship

3.2.1 Qualitative Analysis of Weight Additions, Removals and Shifts

Shifting, adding or removing weight on a ship changes the location of G on a ship.  It is important
for you to qualitatively understand which direction the center of gravity will move when weight is
shifted, added or removed from a ship. This can help in the understanding and as a check upon the
quantitative work that follows.

3.2.1.1 Weight Addition

When weight is added to a ship the
average location of the weight of the ship
must move towards the location of the
weight addition. Consequently, the Center
of Gravity of the ship (G) will move in a
straight line from its current position
toward the center of gravity of the weight
(g) being added. An example of this is
shown in Figure 3.3.

3.2.1.2 Weight Removal

When weight is removed from a ship the
average location of the weight of the ship
must move away from the location of the
removal. Consequently, the Center of
Gravity of the ship (G) will move in a
straight line from its current position
away from the center of gravity of the
weight (g) being removed. See Figure
3.4.
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Figure 3.5 - The Effects of a Weight Shift on the Center of
Gravity of a Ship
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Figure 3.6 - A Weight Shift Being Modeled as a Weight
Removal Followed by a Weight Addition

3.2.1.3 Weight Shift

When a small weight is shifted
onboard a ship the Center of
Gravity of the ship (G) will
move in a direction parallel to
the shift but through a much
smaller distance. G will not
move as far as the weight being
shifted because the weight is
only a small fraction of the total
weight of the ship. An example
of this is shown in Figure 3.5.

An explanation of this can be
provided by the way a weight
shift can be modeled. A weight
shift can be considered as a
removal of a weight from its
previous position and the
addition of a weight at its new
position. Figure 3.6
demonstrates this principle
using the rules governing weight
additions and removals
discussed previously.

Having established some
qualitative rules, we are now in
a position to quantify the
magnitude of any movement in
G. Remember, we shall break
the problem down into the 3
Cartesian directions.
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Figure 3.7 - A Weight Addition Vertically above G

3.2.2 Vertical Changes in the Ship’s Center of Gravity Due to Weight Shifts, Weight
Additions, and Weight Removals.

 
As stated previously, the Center of Gravity of a ship (G) is the point at which the all the mass of
the ship can be considered to be located. It is the point at which the gravitational forces acting on
the ship may be resolved to act. G is referenced vertically from the keel of the ship (K). The
distance from K to G is labeled KG with a bar over the letters to indicate it is a line segment
representing a distance. It is important to keep track of the vertical location of G to predict
equilibrium conditions, in particular it has a considerable bearing on the initial and overall
stability of a ship.

NB: An alternative way of naming the distance KG is to call it the vertical center of gravity 
from the keel (VCG).

3.2.2.1 Weight Addition

Let us consider the situation
where a weight is added
vertically above G on the
centerline of the ship. This
situation is displayed at Figure
3.7. We already know from a
qualitative analysis that G will
move directly towards the
location of the weight addition,
so in this instance, it will move
vertically from Gold to Gnew.
What remains is to quantify the
magnitude of this movement.

There are 2 techniques that can
be used to accomplish this. One
involves taking moments about
a reference point (in this case
the keel), and the other uses a
weighted average technique.
Let us consider the weighted
average technique first as it is
similar to approaches discussed
in chapters 2 and 3.
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¯KGnew ' K̄Gold

Äs old

Äs new

% K̄ga

wa

Äs new

¯KGnew '
K̄Gold Äs old % K̄ga wa

Äs new

Equation 3-6

New Total Moment ' Old Total Moment % Changed Moment

¯KGnew Äs new ' ¯KGold Äs old % K̄ga wa

¯KGnew '

¯KGold Äs old % K̄ga wa

Äs new

C Weighted Average    The KGnew of the ship can be calculated by doing a weighted
average of the distances from the keel to Gold and g with a weighting factor based on a
weight ratio.  This relationship is shown in Equation 3-6 and it is specifically for the
addition of one weight in the vertical direction.

where: KGnew is the final vertical position of the center of gravity of the ship as
referenced from the keel (ft).

KGold  is the initial vertical position of the center of gravity of the ship as
referenced from the keel (ft).

ÄS new is the final displacement of the ship (LT).
ÄS old is the initial displacement of the ship (LT).
Kga is the vertical position of the center of gravity of the weight being

added as referenced from the keel (ft).
wa  is the weight of the added weight (LT).

C Moments about the keel   Alternatively, the same equation can be derived by taking
moments about the keel in the vertical location and balancing the situation by equating the
total moment before the addition with the total moment afterwards.

NB: Those purists amongst you will realize that there is no moment being applied at the keel
because the line of action of all weight vectors passes through the keel. These worries can
be removed by including a sine ö term in each moment expression which will account for
the horizontal component of these forces about the keel. As there will be a sine ö term in
each moment expression, they cancel leaving the expression above. If you are still uneasy
with this, use the weighted average technique.
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Figure 3.8 - A Weight Removal Vertically
above G

¯KGnew ' ¯KGold

Äs old
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% K̄gr

( &wr )
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Equation 3-7

New Total Moment ' Old Total Moment % Changed Moment

¯KGnew Äs new ' ¯KGold Äs old & K̄gr wr

¯KGnew '

¯KGold Äs old & K̄gr wr

Äs new

3.2.2.2 Weight Removal

In a similar manner to the weight addition example,
let us consider what will happen if a weight is
removed from a position above G and on the
centerline. Qualitatively, we know G will move
directly away from the weight removal, moving
from Gold to Gnew. Hence we would expect that
KGnew would be less than KGold. Figure 3.8
displays this situation.

Once again, the magnitude of KGnew can be
determined using either weighted averages or by
taking moments about the keel. However, since in
this case the weight is being removed, the correct
sign for the weight is negative to show that it is
being removed.

C Weighted Average       The equation for KGnew after a single vertical weight removal is
shown by Equation  3-7.

where: Kgr is the vertical position of the center of gravity of the weight being removed
as referenced from the keel (ft).

wr is the weight of the removed weight (LT).

C Moments about Keel      By equating moments before and after the weight removal the
same equation can be derived.
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Equation 3-8

K̄Gnew '
K̄Gold Äs old % w ( K̄ga & K̄gr )

Ä
s new

Equation 3-9

Äs new ' Äs old & wr % wa ' Äs old Equation 3-10

K̄Gnew '
K̄Gold Äs old % w (K̄ga & K̄gr )

Ä
s old

Equation 3-11

¯KGnew Äs old ' ¯KGold Äs old % w (K̄ga & K̄gr )

Ä
s old

( ¯KG
new
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old

) ' w (K̄g
a
& K̄g

r
)

Equation 3-12

3.2.2.3 Weight Shift

Let us now discuss a single vertical weight shift. We have already seen that one can model a
vertical shift as the removal of a weight from one position and the addition of the same weight at a
new position. If we view it this way we can combine Equations 3-6 and 3-7 to quantify this
scenario.  Equation 3-8 shows this combination. Notice that the negative sign attached to wr has
been moved to make the whole removal term negative.

Since the weight removed is the same weight added and therefore is equal in magnitude, Equation
3-8 can be written as Equation 3-9.

For this specific case of a single weight shift the final displacement of the ship will be equal to the
initial displacement because you are subtracting and adding the same weight.

Equation 3-9 can now be written as Equation 3-11.

Algebraically rearranging Equation 3-11 we arrive at a very different looking equation to describe
the final location of the center of gravity of a ship after a single weight shift.  This is shown in
Equation 3-12.
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Figure 3.9 - A Single Vertical Weight Shift
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Equation 3-13

Figure 3.9 shows the line segments described by Equation 3-12. We can rewrite the terms in
parenthesis in Equation 3-12 by defining two new line segments. The distance from the initial
center of gravity of the ship (Gold) to the final center of gravity of the ship (Gnew) will be defined as
line segment (GoldGnew ). The distance from the initial center of gravity of the weight (gr) to the final
center of gravity of the weight (ga) will be defined as line segment (grga). Using these line
segments, Equation 3-12 takes on the form of Equation 3-13.

Remember Equation 3-13 is a very specific equation that only applies to a single vertical weight
shift onboard a ship.  Do not attempt to use this equation for any other case!
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Equation 3-14

3.2.2.4 General Vertical Weight Shift, Addition and Removal Equation

At this point we are ready to write the most general equation to quantify all combinations of
vertical shifts, additions, and removals of weight. The user should use a plus sign when weight is
added and a minus sign when weight is removed. The summation should have as many plus terms
as there are weights added and as many minus terms as there are weights removed. The equation is
shown here as Equation 3-14.

In applying Equation 3-14 always write out the summation terms fully showing each individual
term used. This is necessary so that another engineer can see the specific terms you are using and
to check your work.

NB: After you calculate a new position for the center of gravity you should qualitatively check
your answer to ensure it is reasonable. For example:

Suppose your old KG is 18 feet and a fuel tank has a Kg of 14 feet. After
“steaming” for some time the fuel tank is half empty.  Suppose that you are given all
the numbers you need and you know how to calculate a final KG of the ship.
Suppose you come up with a final KG of 15 feet. Immediately you should know you
made a mistake because removing weight below the existing center of gravity of the
ship should cause the center of gravity of the ship to rise. Your answer should have
been something greater than 18 feet!

You can also check the magnitude of the change. Suppose you calculated a new KG
of the ship to be 100 feet.  Again you should immediately know you made a mistake
because this is much too large a change.

The moral of this story is always check your final answer. This implies you have a
qualitative understanding of the physical processes involved in the calculation of the
number! In exam, test and quizzes, you will be graded more when you show a qualitative
understanding than simply submitting an answer which is obviously incorrect.
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4092 LT & 75 LT % 200 LT

¯KG
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'
77839 ft&LT

4217 LT
' 18.5 ft

Eq 3-15

Example 3.2 An FFG-7 class frigate has an initial displacement of 4092 LT and an initial
vertical location of the center of gravity of the ship of 18.9 feet above the keel. If
200 LT are added 10 feet above the keel, and 75 LT are removed 20 feet above the
keel, what is the new vertical location of the center of gravity of the ship?

Solution:

Remember: Always check your final answer for reasonability and consistency of units.  

In this example, the final answer is reasonable in both the direction and magnitude
of change.

! We would expect the final KG to be a smaller number since both the
addition and removal lower the center of gravity of the ship. Adding the 200
LT below the initial center of gravity of the ship should cause the center of
gravity of the ship to move lower towards the weight added. Removing the
75 LT above the initial center of gravity of the ship should cause the center
of gravity of the ship to move lower away from the weight removed.  

! The direction and magnitude of the change are both reasonable.  

! The units of the final answer are consistent with the parameter being found. 
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Figure 3.10 - The Locations of G and B for a Listing Ship

3.2.3 Transverse Changes in the Ship’s Center of Gravity Due to Weight Shifts, Weight
Additions, and Weight Removals.

 
Recall the transverse direction is the “side to side” direction  (or the port to starboard direction). 
The centerline of the ship separates the port from the starboard. Recall that distances to the port
are defined to be negative, and distances to the starboard are positive. In general, we use the
symbol “y” as the general variable to represent a transverse distance from the centerline of the
ship. Other names you might here in referencing this direction are “half breadth” and
“arthwartships”.

Qualitatively, we know that should a weight be added or removed off center (not on the centerline)
or a weight is shifted transversely across the ship, the ship will assume some angle of inclination.
This angle is called an angle of “List”. A List is the condition where the ship is in static
equilibrium and down by the port or starboard side. In other words, the ship is not level in the
water from side to side. The list angle is created because the weight change has resulted in the
Center of Gravity (G) of the ship to move from the centerline. There are no external forces acting
on the ship to keep it down by the port or starboard. The angle is maintained because the resultant
weight and buoyant force are vertically aligned as shown in Figure 3-2 and Figure 3-10.

The off center G causes a moment to be created within the ship that causes it to rotate. As the ship
rotates, the underwater volume changes shape which causes the Center of Buoyancy (B) of the ship
to move. At small angles of list, B moves in an arc, centered at the transverse metacenter (M). It
continues to move until the shape of the underwater volume causes B to move directly vertically
underneath G, causing the ship to be back in static equilibrium.

NB: The concept of the metacenter and B movement will be discussed in greater detail later in
this chapter.
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Equation 3-15

3.2.3.1 Measurement in the Transverse Direction

The amount of list is usually measured in degrees of incline from the level condition.  When the
ship lists to port the angles are assigned negative values and when the ship lists to starboard the
angles are assigned positive values. In general, we use the symbol “ö” (phi) as the general
variable to represent an angle of inclination to the port or starboard side.

The center of gravity (G) is referenced in the transverse direction from the centerline of the ship.
The distance from the centerline of the ship to the center of gravity of the ship is called the
transverse center of gravity (TCG) and is measured in units of feet.

3.2.3.2 Quantitative Analysis

The final TCG after a transverse weight change can be quantitatively determined by using a
weighted average equation or by equating moments about the centerline before and after the change
in a similar manner shown for vertical changes of weight. The equation takes on the same form as
previously discussed with two differences.  

! The first difference is that the KG terms have been replaced with TCG since we are
working in the transverse direction.  

! The second difference is that distances to port must have a negative sign.  In the
vertical case all distances were positive since the reference point was the keel. In
the transverse case the reference point is the centerline so that the TCG can be
either negative or positive.

3.2.3.3 Generalized Equation

The generalized equation for changes in the transverse center of gravity due to shifts, additions,
and removals is shown in Equation 3-15.
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Eq 3-16

TCGnew '
TCGold Äs old % w (Tcga & Tcgr )

Ä
s new

Equation 3-17

where: TCGnew is the new transverse position of the center of gravity of the ship as
reference from the centerline (ft).

TCGold is the old transverse position of the center of gravity of the ship as
reference from the centerline (ft).

Ä s new is the new displacement of the ship (LT).
Ä s old is the old displacement of the ship (LT).
Tcgi is the transverse position of the center of gravity of the weight being

added or removed as referenced from the centerline (ft).
wi  is the individual weight added or removed (LT).

In applying Equation 3-15 always write out the summation terms fully showing each individual
term used. This is necessary so that another engineer can see the specific terms you are using and
to check your work.

3.2.3.4 Weight Shift

The transverse weight shift is a specific case that results in an interesting simplification of
Equation 3-15.  We will apply Equation 3-15 to a single transverse weight shift from some old
transverse position to some new transverse position. The old and new positions could be port to
starboard, starboard to port, port to less port, port to more port, starboard to less starboard, and 
starboard to more starboard.  Remember the sign convention: distances are negative to port and
positive to starboard of the centerline.

Just as in the single vertical weight shift, the single transverse weight shift can be modeled as a
removal of the weight from the old position and the addition of the same weight to the new
position.  Applying Equation 3-15 to this scenario results in Equation 3-16.

Since the weight removed is the same weight added and therefore is equal in magnitude Equation
3-16 can be written as Equation 3-17.
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For this specific case of a single weight shift the final displacement of the ship will be equal to the
initial displacement because you are subtracting and adding the same weight.

Equation 3-17 can now be written as Equation 3-19.

Algebraically rearranging Equation 3-19 we arrive at a very different looking equation to describe
the final location of the center of gravity of a ship after a single weight shift.  This is shown in
Equation 3-20.

Just as we did in the vertical case, we can define a new distance from the initial center of gravity
of the ship (Gold) to the final center of gravity of the ship (Gnew ) as line segment (GoldGnew ) and a
new distance from the initial center of gravity of the weight (gr) to the final center of gravity of the
weight (ga ) as line segment (grga). Using these line segments, Equation 3-20 takes on the form of
Equation 3-21.  

Remember Equation 3-21 is a very specific equation that only applies to a single transverse weight
shift onboard a ship. Do not attempt to use this equation for any other case!

NB: None of the equations in this text should be memorized.  You will easily be able to
derive the equation you need for your specific problem if you understand the
concepts.  You will get very proficient at writing down the generalized equation “on
the fly” once you have internalized the fundamental concepts.
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Example 3.3: An FFG 7 ship has a displacement of 4092 LT, and an initial transverse center of
gravity 2 feet starboard of the centerline. A 75 LT weight is moved from a position
10 feet port of the centerline to a position 20 feet port of centerline and a 50 LT
weight is added 15 feet port of the centerline. What is the final location of the ship's
transverse center of gravity?

Solution:
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Figure 3.11 - Combining Vertical and Transverse Weight
Changes

3.2.4 Combining Vertical and Transverse Weight Shifts

Fairly obviously, it is very rare for a weight change to occur on board a ship that results in only a
vertical movement of G or only a transverse movement of G. Usually, a weight change will result
in both. Figure 3.11 shows an example with a weight addition.

Qualitatively, we know that G will move directly towards the location of the added weight.  In this
example, it results in an increase in KG and a TCG starboard of the centerline. Theoretically, it
should be possible to calculate the new location of G in one step. However, significant
simplification is achieved by breaking the problem down into the vertical and transverse
directions.

The steps for carrying out an
analysis of this situation would be:

C Qualitatively determine the
approximate location of
Gnew.

C Perform a vertical analysis
to calculate KGnew using
equation 3.14

C Perform a transverse
analysis to calculate TCGnew

using equation 3.15

C Check your vertical and
transverse answers with
your qualitative work.

Using this type of method, you should be assured of success in weight shift, addition and removal
problems. We will now move on and examine the listing ship created by an “off center” G in more
detail. However, before we can do this, we must understand the meaning of the metacenter.
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Figure 3.12 - Important Locations and Line Segments used in Hydrostatic Calculations

3.3 The Transverse Metacentric Radius and the Transverse Metacentric
Height

Figure 3.12 shows a typical sectional view of a ships hull when the ship is floating level in the
water with no list or trim. The important points for hydrostatic calculations are the keel (K), the
center of buoyancy (B), the center of gravity (G), and the transverse metacenter (MT).

3.3.1 The Metacenter

The metacenter was briefly introduced in Section 2.10. It was stated there that the metacenter is a
convenient reference point for hydrostatic calculations at small angles. Recall, there is one 
metacenter associated with rotating the ship in the transverse direction (MT) and another one when
rotating the ship in the longitudinal direction (ML). It was pointed out that the transverse metacenter
is on the order of 10 to 30 feet above the keel whereas the longitudinal metacenter is on the order
of 100 to 1000 feet above the keel.

The metacenter is a stationary point for small angles of inclination. We define “small” to be less
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than 10 degrees. This is the reason the metacenter and the geometry derived here is only applicable
to small angles of inclination. Beyond ~10 degrees the location of the metacenter moves off the
centerline in a curved arc.

3.3.1.1 Metacentric Radius

To locate the metacenter for small angles requires the construction of two lines. The intersection of
these lines defines the location of the transverse metacenter. The first line is the line of action of
the buoyant force when the ship is upright with no list. The second line is the line of action of the
buoyant force when the ship is inclined a small amount.  

When a ship is inclined at small angles (10 degrees), the center of buoyancy (B) moves in an arc.
The center of this arc is the transverse metacenter (MT). Picture in your mind a piece of string
attached to the metacenter at the top and to the center of buoyancy at the other end. This is why the
distance from  the  metacenter (M) to the center of buoyancy (B) is called the transverse
metacentric radius (BMT).  The metacentric radius is a line segment measured in feet and it is a
commonly  used parameter in naval architecture calculations.

3.3.1.2 Metacentric Height

Another important line segment used in naval architecture calculations is the distance from the
center of gravity (G) to the transverse metacenter (MT). This line segment is called the transverse
metacentric height (GMT). As we shall see in the next chapter, the magnitude and sign of the
metacentric height will reveal how strongly the ship will want to remain upright at small angles.
The importance of this parameter will be made clear in the next chapter.

3..3.2 Calculations

Very often in the calculations you will be doing you will need the distance between two of the
points shown on Figure 3.12. It is often the case that you know some of the distances but not others.
To find any other distance you need, simply draw a quick sketch of Figure 3.12 and use your sketch
to see the relationships between what you know and don’t know.   

For example, to find KG you could subtract  KM - GMT.  KG is the line segment that gives the
vertical distance to the center of gravity from the keel. The line segment KMT is the “transverse
metacentric height above the keel”. You may recall that it can be found on the curves of form if you
know the mean draft of the ship. We will see later in this chapter that the GM of a ship can be
experimentally measured by doing an inclining experiment.

3.3.2.1 Advanced Calculations (OPTIONAL)
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To obtain the values of KM in the curves of form, KB is added to BM. Recall that KB can be
calculated by numerical integration of the table of offsets as was shown in Section 2.9.5. BM is
related to the second moment of area of the waterplane and can be calculated by Equation 3-23.

The derivation of Equation 3-23 is beyond the scope of this introductory course.

where: y is the half breadth distance (ft).
ydx is the area of the differential element on the operating waterplane (ft2).
L s is the submerged volume of the ship’s hull (ft3).
IT  is the second moment of the operating waterplane area in the transverse

direction with respect to the “x” axis (ft4).

NB: Physically the second moment of area in this case is a measure of the rotational resistance.  
The second moment of area is a “strong” function of the width of the ship since it
proportional to the half-breadth cubed. In general this tells us that a wider ship will be
harder to roll. 
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3.4 Calculating the Angle of List for Small Angles After a Transverse Shift
of Weight

For small angles of list (<10 degrees) we can easily relate the transverse shift in the center of
gravity of the ship to the angle of inclination. The theory and derivation developed here are
necessary components of the inclining experiment discussed in the next section.

3.4.1 Theory

As discussed previously, when the center of gravity of the ship shifts away from the centerline
there is an instantaneous miss alignment of the resultant weight of the ship with the resultant
buoyant force.  This causes a moment, rotating the ship to the side the shift occurred to. As the ship
inclines the submerged volume changes form, resulting in a new location of the centroid of the
underwater volume formed by the hull.  The ship will continue to rotate until the centroid shifts far
enough to once again be in vertical alignment with the line of action of the resultant weight of the
ship.

To keep the following derivation simple we will assume that we always start with a ship that has
no initial list so that the initial transverse center of gravity is zero feet. In other words, the initial
center of gravity will lie on the centerline of the ship. We will label this point “G0". The final
transverse center of gravity will be the distance from the centerline to a point we will label “Gt”.  

3.4.2 Diagram

The first thing we must do is to draw a typical cross section of a ship’s hull inclined as a result of
a transverse weight shift in the center of gravity. Figure 3.13 shows the inclined hull with the
location of all the key points for our derivation. Additionally, the resultant weight of the ship, the
resultant buoyant force, and the waterline are also shown.

You must be able to understand this diagram and be able to draw it without the use of your notes. If
you understand the concepts it will be very easy to do so.

NB: Do not attempt to blindly  memorize the diagrams in this text. They must be
constructed using the fundamental concepts in a logical progression of thought. 
Further, you should practice drawing each figure because it takes a little artistic skill
to do them correctly.
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Figure 3.13 - Inclined ship to the starboard side due to a shift in the center of gravity.

You should notice the following key items on your diagram when you draw it.  Very often these are
the items that students get wrong on exams.

C The shift in the center of gravity of the ship is perpendicular to the centerline
because the weight shift was perpendicular to the centerline. If your diagram
doesn’t look like it is then put a small square indicating perpendicularity to your
instructor.

C By convention the starboard is the right side of your paper and the waterline is
parallel to the top and bottom of the page.

C The resultant weight of the ship and the resultant buoyant force should be
perpendicular to the waterline, have coincident lines of action, and have their tails
or heads on the center of gravity and center of buoyancy respectively.

C All items should be labeled with the proper symbols including the angle of
inclination (ö), the waterline (WL), the transverse metacenter (MT), the ship’s
center of gravity initially (G0), the ship’s final center of gravity (G1), the center of
buoyancy (B), the resultant weight of the ship (ÄS), the resultant buoyant force (FB),
centerline (6), and keel (K).
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3.4.3 Relationship

Once you have sketched Figure 3.13 the derivation of the relationship between the “shift in the
center of gravity of the ship” and the “angle of inclination” is evident.  Notice the right triangle
formed by the points (MTG0G1).  The line segment G0G1  is opposite from the angle of inclination. 
The metacentric height (G0MT) is adjacent to the angle of inclination.. The opposite side over the
adjacent side of a right triangle defines the tangent of the angle. Solving for (G0G1) yields Equation
3-24.

Substitution of Equation 3-24 into Equation 3-21 yields Equation 3-25.

where: t is the distance the weight is shifted (g0g1)

This is the relationship we sought. It relates the transverse shift in the center of gravity of a ship to
the angle of inclination for angles less than 10 degrees. Equation 3-25 is the basic relationship
used in the inclining experiment in the very next section.
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3.5 The Inclining Experiment 

The goal of the Inclining Experiment is to use small angle hydrostatics to compute the vertical
center of gravity of a ship as referenced from the keel (KG).  The basic process of an inclining
experiment is straight-forward. A known weight (wi ) is moved a known transverse distance (ti). 
This transverse weight shift causes a transverse shift in the center of gravity of the ship, which in
turn causes the ship to list to the side of the weight shift. The amount of weight used (wi) , the
distance it is shifted (ti) , and the resulting angle of list (ö i) are measured and recorded. The
process is repeated moving different weights different distances, port and starboard, causing port
and starboard angles of list. This yields sets of  (wi , ti , ö i)  data were the subscript “ i ” is just a
counting variable.

However, before this process can begin, the ship has to be prepared for the experiment. The
experiment is conducted alongside, in calm water with the ship free to list. It is usually performed
with the ship in its light-ship condition. The light-ship displacement (Älight) is defined by Gilmer
and Johnson as:

“the weight of the ship complete in every respect, including hull,
machinery, outfit, equipment, water in the boilers at steaming
level, and liquids in machinery and piping, but with all tanks and
bunkers empty and no crew, passengers, cargo, stores, or
ammunition on board.”

Introduction to Naval Architecture, p131.

It is necessary to determine the displacement of the light-ship (Älight). This is achieved by
observing the fwd and aft draft marks and consulting the ship’s curves of form. In this step it is
also important to find the density of the water the ship is floating in so that a correction can be
made to the displacement read from the curves of form for the true water density.

Once the ship has been prepared, the inclining weights and apparatus are brought on board.
Typically, the inclining weights are approximately 2% of the displacement of the light-ship (Älight).
With the inclining weights and apparatus on board, the ship is said to be in an inclined condition.
All quantities are then given the inclined suffix. For example Äincl , KGincl .

With the inclining weights and equipment on board, the experiment can then proceed as described
above. This often requires a great deal of co-ordination and the use of riggers etc. For larger ships,
it is common to use a crane to move the inclining weights from and to different transverse
locations. 2% of the displacement of a ship is a considerable weight to move.
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Figure 3.14 - A Typical Plot of Data from an Inclining Experiment

3.5.1 Finding G0MT inclined

Equation 3-25 is solved in terms of the metacentric height (G0MT).  Equation 3-26 shows the
rearranged equation.

Any one set of  (wi , ti , ö i ) could be used in Equation 3-26 to find a value for the inclined
transverse metacentric height. Each set should yield the same value of metacentric height for small
angles. However, there are experimental errors and deviations from the ideal that will yield a
slightly different value for each set of (wi , ti , ö i ) used. 

To achieve an average value for the transverse metacentric height (G0MT) the slope from a graph
of “tangent of the inclining angle” (tan ö i) versus the “inclining moment” (wi ti) is calculated. See
Figure 3.14. The first group of parameters in Equation 3-26 is the slope of this graph. By dividing
the slope by the displacement of the ship the average value of  G0MT is obtained as shown by
Equation 3-27.
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The slope is calculated by picking any two points on the line of best fit and doing a change in “y”
over a change in “x” calculation  (Equation 3-28). Be sure to pick points on the line of best fit! A
common student mistake is to use the original data points to calculate the slope. It is possible that
none of these data points will be on the line you have drawn, the line represents the average of the
data! An advantage of analyzing the data in this manner is that one stray data point can be “thrown
out” or “ ignored” as a bad point.  

NB: There is also a mathematical technique to do the linear regression called “least squares”. 
The mathematical technique is less subjective since no matter who does the calculation it
will yield the same results. The linear regression by the least squares method can be easily
done with a spreadsheet program on a computer. The computer will give the entire
equation of the straight line to many decimal places. This technique minimizes the sum of
the “squares of the error” between each data point and the line, thus the name least squares
method.

Obtaining the average value of the transverse metacentric height (G0MT) is not the objective of the
inclining experiment. Keep in mind the objective is to find the vertical location of the center of
gravity of the ship without inclining gear aboard (KGlight). 2 more steps are required once the
average value of G0MT is obtained from Equation 3-27.

3.5.2 Finding KG incl and Correcting this for the Removal of Inclining Apparatus

The first step is find the vertical location of the center of gravity of the ship with the inclining gear
on board by subtracting the average metacentric height from the value of KMT (Equation 3-29).
The value of KMT is found on the curves of form as a function of mean draft.

The second step is to calculate the vertical location of the center of gravity of the ship without the
inclining weights aboard (KGlight). This is accomplished by doing a weight removal calculation as
explained in chapter 3 This calculation is shown in Equation 3-30.
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3.5.3 Inclining Experiment Practicalities

The inclining experiment is easily
performed on a ship and it is likely that
you will see it carried out or be a part of
the evolution sometime in your career.

The tangent of the inclining angle for each
placement can be measured by attaching a
“plum bob” on a long wire suspended
from a tall mast. The plum bob will
always hang vertically downward and
perpendicular to the waterplane. This
plum bob can be used to measure the
number of inches of deflection the bob
makes when the ship is inclined from the
level position.  Figure 3-15 shows the
right triangle formed by the mast, wire
and horizontal scale.  The tangent of the
inclining angle can be calculated from
this right triangle by dividing the
deflection distance by the length of the
wire as shown in Equation 3-31.

These are the more common problems in doing an inclining experiment:

C Keeping track of all the weights onboard before and during the evolution.
  
C The presence of liquids in less than full tanks creates errors in the measurements.  The shift

in the fluid in a less than full tank creates a virtual rise in the center of gravity of the tank. 
This is called the “free surface effect” and it will be discussed in Chapter 4.

C The test must be done in a calm conditions.  (Test not done at sea.)

C Potentially dangerous in that adding weights high on a ship reduces stability and/ or the 
deck may not be able to support the inclining weights.  Additionally, moving large weights
creates a safety concern to personnel involved.  (These concerns are evaluated before the
procedure ever takes place.)

Example 3.4: A ship undergoes an inclining experiment resulting in a  graph of “the tangent of the
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list angle” versus “the inclining moment” (similar to Figure 3-8) with a slope of 
28591 ft-LT. The displacement is 7986 LT and KM = 22.47 ft.  What is the KG of
the ship without the inclining gear aboard if the center of mass of the inclining gear
is 30 feet above the keel with a weight of  50 LT?

Solution:
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3.6 Longitudinal Changes in the Ship’s Center of Gravity Due to Weight
Shifts, Weight Additions, and Weight Removals.

 
So far we have calculated vertical and transverse weight shifts, weight additions, and weight
removals. In this section we will look at longitudinal weight shifts, weight additions, and weight
removals. Longitudinal problems are done in a different manner because we are usually not
concerned with the final position of G, but the new trim condition of the ship.

The consequence of longitudinal shifts, additions, and removals of weight is that the ship
undergoes a change in the forward and after drafts. When the forward and after drafts have
different magnitudes the ship is said to have trim. Recall from Chapter 2, that trim is defined by the
difference between the forward and after drafts. 
 

Trim = Taft - Tfwd Equation 3-31

If a ship is "trimmed by the bow," then the forward draft is bigger than the after draft.  A ship
"trimmed by the stern" has an after draft bigger than the forward draft.  Recall that the ship rotates
about the center of flotation (F) which is the centroid of the waterplane area. (It does not rotate
about midships!)  When the centroid of the waterplane area is aft of midships the forward draft
will change by a larger amount than the after draft. This is usually the case since a typical ship is
wider aft of midships than forward of midships.

The curves of form assumes the ship is level with no trim, but they may be used for a ship in a
trimmed condition, so long as the trim is not too large. If the ship is trimmed, the entering argument
to the curves of form is the mean draft:

Tm  = (½)(Ta + Tf ) Equation 3-32

The goal of a longitudinal problem is to determine the final drafts forward and aft given the initial
drafts and a description of the weight shifts, weight additions, and weight removals that occurred.

It is helpful in the modeling process to physically visualize the weight shift occurring.  Picture a
large wooden crate on the weatherdeck of a ship that is being pushed more forward or more aft.
Try to predict if the ship will go down by the bow or go down by the stern from your mental
picture.  

C Notice it doesn’t matter where the crate starts positionally, only if it moves forward or aft. 

C Remember to visualize the weight shift.  Pushing a weight forward makes the bow go down
and the forward draft increase.  Pushing a weight aft makes the stern go down and the after
draft increase. Use this knowledge to determine when to add to or subtract from a draft.
Additionally, test your final answer for reasonability and consistency.

3.6.1 Trim Diagram
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To quantify the changes in the forward and after drafts from a weight change requires an
engineering analysis of the process. The analysis starts by developing a picture that shows all the
geometric relationships that exist. This picture is developed logically in a step wise procedure.

1. Draw a single horizontal line that represents the waterplane of the ship from the sheer plan
view. The length of the line represents the length of the ship.

2. Decide which end is the bow and which is the stern, label them.  Show the midpoint of the

line and label it as midships.
3. Show the center of flotation (F) and label it.  Normally assume it is located aft of midships. 

Dimension and label the distances from the AP to the center of flotation (daft) and the FP to

the center of flotation (dfwd).
4. Show the weight change that is occurring and the new waterplane that would exist after the

weight change. To draw this correctly simply rotate your paper in a clockwise or counter

clockwise direction and draw a horizontal line through the center of flotation. By rotating
your paper you have the advantage of simulating the bow or the stern going down and the
water surface remaining level with the bottom of your desk.

In this example we will consider a weight shifted more aft.
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5. Put your paper level again. Any distance above the first waterline is positive and any

distance below is negative. According to this convention the after draft increased by a
positive number which is consistent with what actually happens when weight is shifted
more aft. Draw vertical lines from the ends of the first waterline to the second waterline
forming 2 similar triangles. Label those vertical distances with “äTaft” and “äTfwd”.

6. Form the third similar triangle by drawing a third waterline parallel to the first and starting
with the upper or lower most draft. The vertical leg of this third largest triangle should be
labeled “äTRIM” since the change in trim is equal to the change in draft aft minus the
change in draft forward (See note 3 below). Label the angle of trim with the symbol “è”.   
Avoid using  “ö”  since that is used to express angles of rotation in the transverse
direction.   

Each time a longitudinal problem is performed this diagram must be completed in full.  All the
expressions that follow can only be written if you have a diagram.

Note 1: Notice what happens to the change in trim when the ship goes down by the stern. 
The change in draft aft is positive and the change in draft forward is negative.  Your
subtracting a positive number minus a negative number to get a larger positive
number. This is consistent with the idea that trim down by the stern is positive by
convention.

Note 2: It is really not necessary to follow all the sign conventions in a formal sense if you
use your diagram and a little common sense. The procedure has been written very
formally here to show you that the sign conventions and definitions are consistent
throughout.

Note 3: The following is the  derivation of the “change in trim” equation. Recall a change in
a property is always the final value of the property minus the initial value of the
property. You can always find a change in any parameter using this definition.



3-38

Tfwd new ' Tfwd old ± äTfwd due to trimming moment ± äTfwd due to parallel rise or sinkage     Eq 3-33

Taft new ' Taft old ± äTaft due to trimming moment ± äTaft due to parallel rise or sinkage         Eq 3-34

äTaft due to wl

d
aft

'
äTfwd due to wl

d
fwd

'
äTRIM

L
pp

Equation 3-35

3.6.2 Trim Calculation

The starting equation to calculate the final draft forward or aft is based on an accounting concept.
To find the final balance in a bank account you need to start with the initial balance, add the
receipts  and subtract the debits. Similarity, the final draft forward (or aft) is equal to the initial
draft forward (or aft) minus any decreases in the draft forward (or aft), plus any increases in the
draft forward (or aft) (See Equations 3-33 and 3-34.) 

We have discussed one way for the drafts to change, by a shift in a weight which creates a moment
about the center of flotation (äT fwd due to wl  or  äT aft due to wl ). There are other ways to change the
drafts forward or aft, specifically by adding and/ or removing weight. First, we will go over a
single weight shift and then discuss adding and/ or removing weight.

 To decide if the change in draft forward should be added or subtracted refer to your trim diagram
and common sense. For example shifting weight forward increases the forward draft so the change
in draft forward should be added making the final draft larger than the initial. Let’s call this first
equation the “accounting equation”. It is shown by Equation 3-33 for the final forward draft and by
Equation 3-34 for the final after draft.

The first term in Equation 3-33 and 3-34 are the initial drafts.  These are typically given as an
initial condition of the problem.    

The second term in Equation 3-33 and 3-34 must be calculated by using the similar triangles
shown by the diagram previously  developed.  

The third term in Equation 3-33 and 3-34 will be found by dividing the weight added or removed
by the TPI.  

By looking at the trim diagram we can develop Equation 3-35 from the similar triangles.

The magnitudes of the distances shown in Equation 3-35 are evident in the trim diagram.  If we can
find the magnitude of the “change in trim” parameter we can solve for both the change in draft aft
and forward due to the trimming moment “wl”.  
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äTRIM '
w l

MT1 ))
Equation  3-36

äTPS '
w

TPI
Equation 3-37

The change in trim is found by dividing the moment creating the change in trim (wl) by a parameter
called MT1". The MT1" has unit of LT-ft per inch and is on the curves of form as a function of
mean draft. Equation 3-36 shows this relationship.

At this point you are ready to do any weight shift problem by drawing your picture and deriving
equations 3-33, 3-34, 3-35, and 3-36.  Notice for a weight shift problem the last term in Equation
3-33 and 3-34 is zero.

Weight additions or removals are modeled as a two step process.  

For a weight addition, step one is to assume the weight is added at the center of flotation.  Step
two is to assume the weight is moved from the center of flotation to the resting position of the
weight.   

For a weight removal, step one is to assume the weight is shifted from its resting position to the
center of flotation.  Step two is to assume the weight is removed from the center of flotation. 

Weight additions require you to do all the work that you would do for a weight shift problem and
to do one additional calculation.  The additional calculation is to find the change in draft aft or
forward due to adding or removing weight at the center of flotation.  Since the center of flotation is
at the pivot point of a floating ship, adding or removing weight at this location only causes the ship
to sink or rise in a “parallel” fashion.  In other words, there will be no change in trim, the after and
forward drafts will change by the same amount.  The resulting waterline, after the addition or
removal of weight from the center of flotation, is parallel to the original waterline.  This
occurrence is called “parallel change” or in the case of weight addition “parallel sinkage”.  

The change in draft aft or forward due to adding or removing weight at the center of flotation (äTPS

) can be found by Equation 3-37 and it is the last term in Equation 3-33 and 3-34.

where: äTPS is the change in draft due adding or removing weight (in).
w is the amount of weight added or removed at the center of flotation (LT).
TPI is the tons per inch immersion conversion factor (LT/in).

Exercise 3.5: An FFG7 is originally at a draft of 16.25 ft in level trim. 100 LT are removed from
a location 75 ft forward of amidships. What are the final forward and after drafts?
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An FFG7 is 408 ft long and has the following characteristics:

T (ft) Ä (LT) TPI (LT/in) MT1" (ft-LT/in) LCF (ft)         
aft amidships

16.00 3992 33.0 793.4 24.03

16.25 4092 33.2 800.7 24.09
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3.7 Correction to Displacement for Trim   (Optional)

The curves of form are calculated assuming a ship with zero trim. So long as the trim is not
significant, most of the quantities found will be sufficiently accurate.

Since the entering argument for the curves of form is mean draft, it will be useful to see what the
effect of trim is on the displacement gained from the curves. The LCF is normally aft of amidships.
If the ship trims by the stern, then the mean draft will be less than if the ship were in level trim.
Therefore, you will enter the curves at a smaller draft and read a displacement smaller than the
actual displacement.

The correction to displacement for trim is made in the following manner:

where: äÄ is the correction to displacement
ÄTmean is the displacement read from the curves of form at the mean draft
äÄ1ft is the correction to displacement for a 1 ft trim read at Tmean on the curves 

of form 
Trim is the difference between the fore and aft drafts.

Example 3.6: DDG51 has a mean draft of 20.75 ft and is trimming 1.5 ft by the stern.  What is the
displacement?

Draft (T) Displacement Ä Corr. to Disp. for 1 ft Trim 

20.75 ft 8443 LT 31.1 LT/ft

Solution:

äÄ = (31.1 LT/ft)(1.5 ft) = 46.7 LT

Ä = 8443 LT  +  46.7 LT  = 8490 LT
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HOMEWORK CHAPTER 3

Section 3.1

Archimedes' Principle and Static Equilibrium

1. State the necessary conditions for static equilibrium and show with a diagram how they
apply to a free floating ship

2. Calculate the gage pressure and absolute pressure 20 feet below the surface for both salt
water and fresh water. Assume that the atmospheric pressure is at 14.7 psi.

3. Calculate the resultant hydrostatic force being experienced by a box shaped barge 100 ft
long 20 ft wide floating at a draft of 6 ft in salt water. How does this compare with the
buoyant force (FB).

4. At a draft of 23.5 feet, the underwater volume of a ship is 350,000 ft3. The ship is floating
in salt water. What is its displacement in LT? 

5. The displacement of a CG47 class cruiser is 9846 LT.

a. What is the underwater volume of the ship if it is floating in 59EF salt water?. 

b. What is the underwater volume if the ship is floating in fresh water at the same
temperature?

c. Explain the difference, if any, in terms of Archimedes Principle and static
equilibrium.

6. A Marine landing craft can be approximated by a box-shaped, rectangular barge with the
following dimensions: Length = 120 feet, Beam = 25 feet, and Depth = 7.5 feet. When
empty the barge has a draft of 2.5 feet. You are the Combat Cargo Officer on an
amphibious ship responsible for the safe loading of landing craft.

a. The landing craft has a maximum safe draft of 5.25 feet. How many tons of cargo
can be loaded without exceeding this draft?

b. An amphibious operation requires that the landing craft must cross a shoal that is
150  yards from the beach. At high tide the charted depth at the shoal is 4.5 feet.
How many tons of cargo can be loaded on the barge so that it will safely arrive at
the beach and not run aground?

c. The landing craft is loaded to a draft of 5 feet in salt water, and is going to a pier
located in a fresh water river. At low tide the depth of water pierside is 5.5 feet.
Will the boat ground itself at low tide? Why or why not?

Sections 3.2
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Vertical Shifts in the Center of Gravity

7. USS CURTS (FFG-38) is floating on an even keel at a draft of 15.5 feet, with KG = 19 feet
on the centerline. Lpp = 408 feet. When refueling the ship takes on 186 LT (60000 gallons)
of F-76 to a tank located on the centerline, 7 feet above the keel. Find the new vertical
center of gravity after receiving fuel.

8. USS SUPPLY (AOE-6) is underway in the North Atlantic preparing to UNREP ammunition
and stores to the Battle Group. The ship is currently at a draft of 38 feet, and the center of
gravity is located 33 feet above the keel on the centerline. Lpp = 734 feet. In preparation
for the UNREP, 1000 LT of ammunition, fresh, and frozen stores are moved from a location
15 feet above the keel to the main deck, which is located 25 feet above the waterline.
Determine the vertical location of the ship’s center of gravity after moving stores up on
deck.

  
9. USS CUSHING (DD-985) enters a shipyard for an overhaul.  As it entered the shipyard,

the ship’s displacement was 7500 LT with KG = 19.7 ft, on the centerline. Lpp = 528 ft. 
During overhaul the following work was performed.

Removed Items Added Items

Item Weight Kg Item Weight Kg
ASW Fire Control 40.0 LT 19.0 ft TLAM Fire Control 50.0 LT 40.0 ft

ASROC Launcher 18.0 LT 33.0 ft Vertical Launch Sys 29.0 LT 20.0 ft

Air Search Antenna 5.0 LT 64.0 ft GT Generator 11.5 LT 8.0 ft

1. Determine the ship’s displacement and KG after the overhaul.

2. Determine the ship’s draft before and after overhaul

10. USS THACH (FFG-43) departs Singapore for a seven day transit to Yokosuka, Japan. The
ship got underway at a draft of 16.3 feet, with the center of gravity on the centerline, 18.7
feet above the keel. Lpp = 408 feet. THACH departed port with 605 LT (195000 gallons)
of fuel. During the transit the ship burned 65% of its fuel. The fuel came from tanks located
on the centerline, 5 feet above the keel. Determine the vertical location of the ship’s center
of gravity upon its arrival in Yokosuka.

Vertical and Transverse Shifts in the Center of Gravity
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11. USS THOMAS S GATES (CG-51) has a displacement of 9600 LT, and KG = 23.19 ft.  The
TCG is on the centerline. 5 LT of water are shifted from a location 5 ft above the keel and
22 ft starboard of centerline to a location 5 ft above the keel and 10 ft port of centerline.

a.  What is the final KG?

b.  What is the final TCG?

12. USS THORN (DD-988) is floating upright with a of displacement 9906 LT and KG = 23.19
ft.  25 LT of equipment are added to the ship at an average location 30 ft above the keel
and 8 ft starboard of the ship's centerline.

a. What is the new KG?

b. What is the new TCG?

c. This new location of G is unsatisfactory. At what transverse and vertical location
would you add 20 LT of lead ballast to return to the destroyer’s original KG and
TCG?

13. USS RUSSELL (DDG-59) is floating on an even keel at a draft of 20.5 feet. The center of
gravity is located on the centerline, 21.3 feet above the keel. Lpp = 465 ft. 150 LT of
machinery is removed from a location 10 feet above the keel, 17 feet to port of centerline.

a. Determine KG after the machinery is removed.

b. Determine the ship’s new TCG after removing the machinery.

c. Draw a diagram showing the ship in static equilibrium after the machinery has been
removed.

Section 3.3

The Metacenter

14. Define in terms of K, B, and G and show on a diagram:

a. Transverse Metacentric Height (GMT)

b. Transverse Metacentric Radius (BMT)

15. Using the curves of form for the FFG7, determine its Transverse and Longitudinal
Metacentric Heights (GMT & GML) when it is floating at level trim with a mean draft (TM)
of 12.4 ft with KG = 19 ft. Why is GML much larger than GMT?
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Section 3.4

Calculating the Angle of List

16. A small weight is shifted from port to
starboard as shown on the Figure. Redraw the
figure showing the final positions of the center
of gravity (G), center of buoyancy (B), the
resultant weight of the ship (ÄS ), the resultant
buoyant force (FB), the keel (K), the transverse
metacenter (MT).  Be neat, clearly label, and
use a straight edge where possible. Assume
the angle of list is small.

17. USS SIMPSON (FFG-56) is underway on an even keel at a draft of 16 feet. Lpp = 408 ft.
KG = 20.2 ft on the centerline. After 4 hours of steaming the ship has burned 10000 gallons
(31 LT) of fuel from a service tank located 11 ft port of the centerline, 13 ft above the keel. 

a. Calculated the new KG and TCG.

b. Calculate the ship’s angle of list,

c. To refill the service tank, 10000 gallons (31 LT) of fuel are pumped from a storage
tank located 5 ft starboard of the centerline, 9 ft above the keel to the port service
tank. Determine the ship’s metacentric height and angle of list after transferring
fuel.

18. USS ENTERPRISE (CVN-65) is underway on an even keel at a draft of 38 feet. The ship’s
center of gravity is located 36 ft above the keel on the centerline. Lpp = 1040 ft. In
preparation for flight operations, V4 Division transfers 500000 gallons of JP-5 (ρfuel =
1.616 lb s2/ft4) from tanks located 20 ft above the keel, 49 ft starboard of the centerline to
tanks located 20 ft above the keel, 45 ft to the left of centerline. 

a. Calculate the ship’s angle of list after the fuel transfer.

b. In order to safely move aircraft, the ship cannot have a list greater than 1 degree. In
order to return the ship to an even keel, how many tons of salt water ballast must
the DCA add to tanks located 65 ft starboard of the centerline?

Section 3.5
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Inclining Experiments

19. a. Given the diagram in Q 16 with a small weight shift from port to starboard, derive
an expression for the metacentric height (GMT) in terms of the tangent of the list
angle (tan ö), the displacement of the ship (ÄS) , and the moment produced from the
weight shift (wt). The starting line of your derivation should be...

(Note: A derivation is a series of steps that someone should be able to follow logically to
the conclusion.  Show this derivation in detail.)

b. What is the goal of doing an inclining experiment?

c. Show and explain how the equation derived in part “a” is used to obtain the stated
goal of the inclining experiment in part “b”.

d. Where does the value KM come from and what are the units?

e. What is KM a function of?

20. The following data was taken on an inclining experiment:

Ship:  DD 963
Level trim, draft = 20.5 ft in the light ship condition
Inclining gear weighs 28 LT and is loaded 43 ft from the keel on the centerline

Inclining moment List Angle
880 ft-LT (stbd) 2.3 deg stbd
528 ft-LT (stbd) 1.2 deg stbd
0 0.2 deg port
528 ft-LT (port) 1.5 deg port
880 ft-LT (port) 2.3 deg port

Determine the location of the ship’s vertical center of gravity in the light ship condition..

Section 3.6

Longitudinal Trim Problems
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21. A ship has a forward draft of 20 feet and an after draft of 21.6 feet.  What is the trim, both
magnitude and direction?  What is the mean draft?

22. USS OLIVER HAZARD PERRY (FFG-7) is preparing to enter drydock for overhaul. The
ship is currently at a draft of 14 ft. KG = 21.5 ft on the centerline. Lpp = 408 ft. To enter
drydock the ship must be trimmed 9 inches by the stern. 

a. To maintain the ship’s stability, the mean draft cannot change. What must be done to
achieve the desired trim condition?

b. To achieve the desired amount of trim, it is decided to transfer fresh water ballast
from a tank located 106 ft forward of amidships to a tank located 75 ft aft of
amidships. How many LT of water must be transferred?

23. USS ARLEIGH BURKE (DDG-51) is originally in level trim at a draft of 21.00 ft.  180 LT
of equipment are moved from a position 90 feet aft of amidships to a position 100 feet fwd
of amidships.  KG is 23.82 feet, and the length is 466 feet.  Draw a diagram showing the
weight shift, longitudinal center of flotation, and the initial and final waterlines to find:

a. Final forward and after drafts

b. Final mean draft

24. USS SPRUANCE (DD-963) is floating with at a level trim of  21.25 feet.  Ship length is
529 feet. 120 LT are added at a location 122 feet aft of amidships.  Draw a diagram
showing the location of the weight added, the parallel sinkage, the final longitudinal center
of flotation and the initial and final waterlines to find:

a. Final forward and after drafts

b. Final mean draft

25. USS RANIER (AOE-7) is underway on an even keel at a draft of 38 ft. KG = 33 ft on the
centerline. Lpp = 734 ft. During a day of UNREP, 750000 gallons of F-76 and JP-5 are
transferred from tanks located on the centerline, 19 ft above the keel, and 225 ft aft of
amidships to ships of an ARG. (ρfuel = 1.616 lb s2/ft4)

a.         How many tons of fuel were transferred to the ARG.

b. What is the new KG of the ship after UNREP?

c. Using an appropriate diagram determine the ship’s forward, aft, and mean drafts
following the UNREP.


